

alliance nationale pour les sciences de la vie et de la santé

ITMO IMMUNOLOGY, INFLAMMATION, INFECTIOLOGY AND MICROBIOLOGY

ITMO CELL BIOLOGY, DEVELOPMENT AND EVOLUTION

Mechanotransduction of Host-Pathogen Interactions

December 17th, 2018

Auditorium Biopark 11, rue Watt Paris 13^e, France

9:00 a.m. – 9:30 a.m.	Welcome
9:30 a.m. – 9:40 a.m.	Introduction by organizers
	Session 1: Biophysics of Parasite-host cell interactions
9:40 a.m. – 10:15 a.m.	Markus ENGSTLER, University of Würburg, Germany "From solitary swimmers to swarms and back: trypanosomes on their journey through the tsetse fly and beyond"
10:15 a.m. – 10:30 a.m.	Elisabeth LABRUYERE et al, Pasteur Institute, Paris, France "A mechano-imaging method to quantify intracellular biophysics"
10:30 a.m. – 11:05 a.m.	Pierre BUFFET , Integrated red cell biology, Paris, France "Malaria, red cells and red spleen: from mechanical friction to controllable infection?"
▶ 11 :05 a.m. – 11 :25 p.m.	Coffee Break
11 :25 a.m. – 12 :00 p.m.	Isabelle TARDIEUX, Institute for Advanced Biosciences, Grenoble, France "The Toxoplasma tour de force to unfold the intravacuolar developmental program in metazoan cells"
▶ 12 :00 p.m. – 12 :15 p.m.	Julien ROBERT-PAGANIN et al, Curie Institute, Paris, France "The atypical and tunable force generation mechanism of <i>Plasmodium</i> class XIV myosin drives parasite invasion"
▶ 12 :15 p.m. – 12 :50 p.m.	Friedrich FRISCHKNECHT, Parasitology Heidelberg University, Heidelberg, Germany "Forces and shape changes of <i>Plasmodium</i> sporozoites during transmission of malaria"
12:50 p.m. – 1:05 p.m.	Eloïse BERTIAUX et al, Pasteur Institute, Paris, France

doublets in the trypanosome flagellum" **1**:05 p.m. − 2:15 p.m. Lunch break with posters Session 2: Biophysics of bacterial-host cell interactions ▶ 2:15 p.m. – 2:50 p.m. Anne-Marie KRACHLER, McGovern Medical School, Texas, USA "Biophysics of bacterial adhesion and virulence" ▶ 2:50 p.m. – 3:05 p.m. Claude LOVERDO et al, Laboratoire Jean Perrin, Paris, France "Antibody-mediated enchainment of bacteria in the gut: a possible mechanism for microbiota homeostasis" ▶ 3:05 p.m. – 3:40 p.m. Khalid SALAITA, Emory University, Atlanta, Georgia, USA "Biophysics, nanoscience, force sensors at the cell membranes" Nathalie SAUVONNET et al, Pasteur Institute, Paris, France ▶ 3 :40 p.m. – 3 :55 p.m. "Mechanical forces and 3D topology of the colonic epithelium are critical for Shigella infection using a biomimetic human gut on a chip" Coffee Break

"Bidirectional intraflagellar transport is restricted to two sets of microtubule

"Mechanical forces and 3D topology of the colonic epithelium critical for Shigella infection using a biomimetic human gut of the colonic epithelium critical for Shigella infection using a biomimetic human gut of the colonic epithelium critical for Shigella infection using a biomimetic human gut of the colonic epithelium critical for Shigella infection using a biomimetic human gut of the colonic epithelium critical for Shigella infection using a biomimetic human gut of the colonic epithelium critical for Shigella infection using a biomimetic human gut of the colonic epithelium critical for Shigella infection using a biomimetic human gut of the colonic epithelium critical for Shigella infection using a biomimetic human gut of the colonic epithelium critical for Shigella infection using a biomimetic human gut of the colonic epithelium critical for Shigella infection using a biomimetic human gut of the colonic epithelium critical for Shigella infection using a biomimetic human gut of the colonic epithelium gut of the colonic epithe